
All-in-one implementation framework for binary
heaps

Jyrki Katajainen

Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen East, Denmark

Abstract. By a few search-engine queries, it was easy to identify several alterna-
tive ways of implementing a binary heap, the fundamental priority-queue structure
loved by us all. Which one of these alternatives is the best in practice? The opin-
ions of crowd-pullers and textbook authors are aligned: use an array. Of course, the
correct answer is “it depends”. To get from opinions to facts, an adaptable com-
ponent framework was written that provides a variety of customization options so
it could be used to realize many of the proposed variants. Also, some of the derived
implementations were performance benchmarked. From this work, two conclusions
can be drawn: (1) It is difficult to achieve space efficiency and speed at the same
time. If n denotes the current number of values in the data structure, ε is a small
positive real, ε ă 1, and |V| denotes the size of the values of type V in bytes, space
efficiency means p1 ` εq|V|n bytes of space, and speed means Oplg nq worst-case
time per push (insert) and pop (extract-min). (2) Sometimes a linked structure
and clever programming is a viable option. If a binary-heap variant that you would
need is not available at the software library you are using, by reading this essay
you can be spared from some headaches.

1. Introduction

In its elementary form, a priority queue Q is a data structure that stores a
multiset of values and supports the operations:

top: Return a reference to the value in Q that has the highest priority with
respect to some predetermined comparison function. Precondition: Q

is not empty.

push: Insert a new value into Q.

pop: Remove the value having the highest priority from Q. Precondition: Q

is not empty.

Naturally, there should be a way to construct Q, given a sequence of values,
and to destroy Q when it is not needed any more. To be of any use, there
should also be function size that returns the number of values in Q. Through-
out the text, n denotes the number of values stored in a data structure prior
to the operation in question and lg n is a shorthand for log2pmaxt2, nuq.

It is widely agreed that the simplest and most practical way of imple-
menting a priority queue is to use a binary heap [36], which is described in

2

most textbooks on data structures and algorithms (see, e.g. [10, Section 6]).
Recall that a binary heap has the following properties:

– It is a nearly-complete binary tree [10, Section B.5.3], i.e. a tree
that is obtained from a complete binary tree by removing some of the
rightmost nodes at the bottommost level of the tree.

– Each node of this tree stores a value.

– The values are ordered such that, for each node, the value stored at
that node has a higher priority than the values in the descendants of
that node (if any).

Normally, the tree is represented in an array, but other representations are
also possible.

In this essay, different options of implementing a binary heap are exam-
ined. For a recent survey on priority queues in general and their theoretical
characteristics, see [6]. The following question-answer (Q-A) pair sums up
the contents of this essay.

Q: What is the best way of implementing a binary heap in a software library?

Here the word best is intentionally ambiguous.

A: Provide a generic framework that can be used to realize a wide variety of
implementations, and let the user of the library select the implementation
that suits best for her or his needs.

The focus of this essay is on the design, implementation, and benchmark-
ing of such all-in-one framework for realizing different binary-heap variants,
whether they were array-based, pointer-based, or a combination of the two.
An important goal is to make the framework customizable and extendable.
For other adaptable component frameworks of its kind, see [2, 29] (search
trees), [21] (dynamic arrays), and [8, 12] (addressable priority queues).

I decided to investigate this matter because I doubted whether the binary-
heap framework used in our earlier experimental studies [8, 12] was good
enough. In general, binary heaps performed well in these horse races, but
both of these earlier studies failed to broach two issues:

(1) In policy-based benchmarking, frameworks are used to achieve fair re-
sults. Sometimes a framework can be too general, sometimes too fine-
grained. In the case of our experimental papers, it remained unresolved
how big the overhead caused by the frameworks was.

(2) Our binary-heap implementation failed to support push in Oplg nq worst-
case time and guarantee that the amount of space used was Opnq at
all times. This was because the dynamic-array implementation used in
the experiments did not guarantee good worst-case runtime or space
efficiency.

In most textbooks on data structures and algorithms an array-based so-
lution is described. However, if you study the proposed implementations
carefully, you will observe that not many of them support push and pop in
Oplg nq worst-case time, or use Opnq space, because the dynamization of the

3

underlying array is not done properly. At this point, you should be worried
and ask why this has not been done correctly.

An exception is the book by Goodrich et al. [16, Section 7.3.3] where the
authors sketch a generic implementation that can realize both an array-based
and a pointer-based binary heap. However, the implementation details of
the pointer-based solution were left to the exercises. The central problem is
how to maintain a pointer to the last node at the bottommost level of the
heap. They offered three options:

threading [16, Exercise C-7.7]: Store additional pointers at the nodes such
that each node having no children has direct access to its predecessor
and successor in breadth-first order. These pointers can be maintained
such that the extra overhead is just Op1q per push and pop.

bit stack [16, Exercise C-7.8]: Use the bits in the binary representation of
n` 1 (push) or n (pop) to access the last node when traversing the tree
downward starting from the root, 0 meaning go to the left child and
1 meaning go to the right child. The bit string is processed from the
most significant to the least significant and the first 1 refers to the root.

finger search [16, Exercise C-7.9]: Search for the predecessor or (at this
point non-existing) successor of the last node by traversing the tree
first bottom up and then top down starting from the present last node.

Which of these alternatives will work best or is there even a better way of
implementing a binary heap as a linked structure?

Based on some initial googling, the question how to implement a binary
heap seems to be of interest for many bloggers, programmers, and students
(and indirectly their teachers). With the keywords “pointer-based binary
heaps”, Google ranked highest a page [31] at Stack Overflow. People, who
wrote on this page, mentioned several implementation alternatives; my in-
terpretation of the options that were considered feasible was as follows:

implicit tree: a standard implementation using an array (3 votes)

referent tree: an array of pointers to nodes storing the values (3 votes)

linked tree: a pointer-based tree implementation à la binary search trees
(9 votes); some specific variants were supported explicitly: threading
(1 vote), bit stack (1 vote), and finger search (3 votes).

In the answer to the same Google query, on the page [30] ranked third, there
was a beautiful sketch how to implement a pointer-based solution using a bit
stack and storing two pointers per node. However, no one could convincingly
justify why and when one implementation would be better than another.

The structure of this essay follows Kolb’s learning cycle [23], according
to which in every learning situation one should answer the following four
questions: why (Section 3), what (Section 4), how (Section 5), and what if
(Section 7). I added two more questions to this list: to whom (Section 2)
and how well (Section 6). After answering these questions, I conclude the
essay with a couple of remarks (Section 8).

4

#include <functional> // std : : less
#include <vector> // std : : vector

template <typename V , typename S “ std : :vector<V>, typename C “ std : :less<V>>
class priority_queue {
public :

using value_type “ V ;
using container_type “ S ;
using N“typename S : :size_type ;

priority_queue(C const&, S const&);
„priority_queue() ;

N size() const ;
V const& top() const ;
void push(V const&);
void pop() ;
};

Figure 1. Part of the interface of the C++ standard-library priority-queue class template

2. To whom?

I expect that the reader of this essay has taken a course on programming and
another on algorithmics either at university or high-school level. Possibly,
this essay could also be used as a supplementary material on an algorithmics
course. All programs are described using C++ [33] so the reader should be
able to read them. The text may also inspire teachers when lecturing on
priority queues, textbook authors when writing a chapter on priority queues,
researchers when seeking directions for future research, and professional pro-
grammers when designing frameworks.

3. Why?

In the C++ standard library [9, Clause 23.6.4], a priority queue is a class
template that has three type parameters (see Figure 1):

V: the type of the values stored,

S: the type of the sequence used for storing the values, and

C: the type of the comparator used in value comparisons.

In Figure 1, as in the other transliterated programs, special symbols are
used to distinguish type names from variable names. When instantiating
std::priority_queue, the argument corresponding to V can be any type sup-
porting copy construction and copy assignment (or move construction and
move assignment). As to S, the argument can be any sequence supporting
copy construction, operator[], size, push_back, and pop_back. And as to C,
the semantic requirement is that the function or functor given as argument
induces a strict weak ordering on the values [9, Clause 25.4]. By default,

5

the sequence is of type std::vector, which is a dynamic array implemented in
any incarnation of the C++ standard library, and the comparator is of type
std::less, which makes the underlying priority queue a max-heap.

One of the cornerstones in the design of the C++ standard library was
copy semantics [32]. That is, values are owned by a container; they are never
shared by different containers. Later, the standard library was extended to
support move semantics as well [9]. This is in harmony with the original
design since a value is still owned by a single container, but the owner can
change. If you are unsure about the details of move semantics, consult any
up-to-date textbook on C++ for more information (e.g. [33, Section 17.5]).

Often std::priority_queue is implemented as a binary heap and it is well
programmed, so the default set-up is satisfactory in many applications. Let
us list some situations where this set-up is no longer sufficient.

tight worst-case guarantees: The underlying sequence, as it is often the
case with the implementations of std::vector, may not support push_back

and pop_back in Op1q worst-case time. As a consequence, the time
bounds for push and pop may just be Oplg nq in the amortized sense.

space efficiency: When memory allocation and freeing is done piecewise,
in addition to the space required by the n values, Θp

?
nq extra space

is known to be necessary and sufficient for a binary heap [7]. In the
default set-up, the amount of extra space used can be much higher.

expensive moves: „lg n value moves per push or pop can be too much.
Here „fpnq means the quantity that approaches fpnq when n grows to
infinity.

expensive comparisons: „lg n value comparisons per push or„2 lg n value
comparisons per pop can be too much. On the other hand, in the aver-
age case the default set-up performs almost optimally in this respect.

shared values: Sometimes a value is a member of several sets at the same
time. It can be tedious to link the copies having different owners, and
it can be inefficient to traverse back and forth between the copies.

larger operation repertoire: If a user needs support for a general extract,
taking the position of a value within the data structure as its parameter,
the default set-up relying on an array of values cannot be used at all.
Yet another interesting operation is merge, which combines two priority
queues, and arrays are not well suited for that.

referential integrity: Because a straightforward implementation moves
values around, references to them cannot be kept valid, and handles
to values within the data structure cannot be provided (compare the
previous two items).

exception safety: The template arguments are specified by the user and
their operations can throw exceptions. If an exception occurs in the
middle of a modifying operation, the data structure may be left in an
inconsistent state.

concurrent updates: With off-the-shelf algorithms, deadlocks can occur
if several processes update a binary heap concurrently.

6

implicit tree
0 1

¨ ¨ ¨
i

¨ ¨ ¨A:

position: (&A[0], i)

current value: A[i]

left child: (&A[0], 2 ∗ i ` 1)

referent tree
0 1

¨ ¨ ¨
i

¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

B:

position: (&B[0], i)

current value: (∗B[i]) .value()

left child: (&B[0], 2 ∗ i ` 1)

inverse tree

0 1 ¨ ¨ ¨ i ¨ ¨ ¨

0 1

¨ ¨ ¨
i

¨ ¨ ¨

p

C:

position: (&C[0], p)

current value: (∗p).value()

left child: (&C[0], C[2 ∗ (∗p).rank() ` 1])

linked tree

p

position: p

current value: (∗p).value()

left child: (∗p).left()

Figure 2. Visualization of the four desirable implementations; values live in circles

A priority queue is a fundamental data structure that is needed in many
applications and, as the above list confirms, the demands in different appli-
cations vary. Since there are situations where the standard-library imple-
mentation does not fit the bill, it is necessary to consider other options.

The implementations of interest for this essay are visualized in Figure 2.
In the approaches that use an array, the array can store the values directly
(implicit tree), it can store pointers to cells that each encapsulate a value
(referent tree), or an array can be used for navigational purposes so that
the values are stored in cells, each cell stores a reference to an array entry,
and that entry stores a pointer back to the corresponding cell (inverse tree)
[10, Section 6.5]. The fourth approach is to use a purely linked structure
(linked tree). In [8, 12], the inverse-tree approach was benchmarked against
its competitors; the given solution also supported extract in logarithm worst-
case time. In [16], both the implicit-tree and linked-tree approaches were

7

implicit tree

A : array of values
capacity fixed
indexing starts from 1

n : size of A
in : value to be added
i , j : indices
less : comparator

void inheap(A , n , in) {
i “ n “ n ` 1;

scan :
i f (i > 1) {
j “ i / 2;
i f (less(A [j] , in)) {
A [i] “ A [j] ;
i “ j ;
goto scan ;
}
}
A [i] “ in ;
}

referent tree

first , past : randoḿ access iterators
less : comparator
in : value to be added
hole , parent : indices

void push_heap(first , past , less) {
in “ ∗(past ´ 1) ;
hole “ past ´ first ´ 1;
parent “ (hole ´ 1) / 2;
while (hole > 0 and less(∗(first ` parent) , in)) {
∗(first ` hole) “ ∗(first ` parent) ;
hole “ parent ;
parent “ (hole ´ 1) / 2;
}
∗(first ` hole) “ in ;

}

in : value to be added
p : pointer to a cell encapsulating a value
D : dynamic array of pointers to cells

indexing starts from 0
less_ref : comparator comparing pointers to

cells using values

void push(in) {
p “ create(in) ;
D .push_back(p) ;
push_heap(D .begin() , D .end() , less_ref) ;
}

Figure 3. Stylized implementations of push; these programs are freely adapted from the
sources given; for the functions not described, consult the sources; (1) implicit tree [36],
(2) referent tree (programmed by Jensen [11]), (3) inverse tree [18], and (4) linked tree
[16]

8

inverse tree

D : dynamic array of pointers to
cells referring back to D

i , j : indices
less : comparator

void siftup(D , j , less) {
i “ j / 2;
while (j “‰“ 1 and
less(D [i]Ñvalue() , D [j]Ñvalue())) {
swap_cells(D [i] , D [j]) ;
j “ i ;
i “ j / 2;
}
}

pair : (pointer to the owner , pointer to
a cell) specifying a position

D : dynamic array of pointers to cells
indexing starts from 1

p : pointer to a cell storing a value and
an index back to D

last : index
H : heapifier that does all datá structural

transformations

position insert(pair) {
get<0>(pair) “&D ;
p“ get<1>(pair) ;
D .push_back(p) ;
last “ D .size() ;
(∗p) .set_rank(last , &D) ;
H .siftup(D , last , less) ;
return pair ;
}

in : value to be added
p : pointer to a cell storing a value and

a reference back to its owner
t : iterator encapsulating a position
R : realizator operating with cells instead

of values

iterator push(in) {
p “ create(in) ;
t(p) ;
t “ R .insert(t) ; // casts automatic
return t ;
}

linked tree

in : value to be added
u , z : positions of cells storing values
T : tree of cells
less : comparator

void insert(in) {
z “ T .add(in) ;
while (not T .is_root(z)) {
u “ T .parent(z) ;
i f (not less(z .value() , u .value())) {
break;
}
T .swap_values(u , z) ;
z “ u ;
}
}

Figure 3. (cont.)

9

realized simultaneously by the same class template, but this solution did not
support extract since values were moved. In order to keep all cell references
valid, it is better (but more expensive) to swap cells, instead of values. In
our implementations the cell references are retained valid if possible.

Actually, the desired implementations are available at the CPH STL [11].
Figure 3 shows, in a stylized form, how push is programmed in these im-
plementations. Can you see that the insertion algorithm used in these four
programs is the same? The goal of this study is to provide an implementa-
tion framework that can be used to generate different binary-heap variants.
Hopefully, it would be easier to maintain this framework than four or more
separate implementations. After reading the essay and possibly looking at
the source code, you should evaluate if this goal is met.

The contribution of this essay can be summarized as follows:

– I provide an all-in-one framework that can be used to generate a large
set of implementations for a binary heap.

– I explain how this framework can be customized—potentially extended—
to derive the desired implementations.

– I report how well some of the basic implementations perform in my
environment which provides guidelines for their use.

– I place the developed code in the public domain (see, “Software avail-
ability” at the end of the essay) so that other programmers do not need
to reinvent the wheel.

4. What?

Let us try to understand what a binary heap is in its abstract form. After
defining the terminology, the work done can be described concisely. Recall
that the goal is to write a generic framework that can be easily customized
and extended to get a wide variety of implementations for a binary heap.

Our way of thinking about data structures is depicted in Figure 4. A data
structure is comprised of a set of cells; each cell (illustrated as a circle in the
figure) is capable of storing a value . Every cell has a position . A cell can
be inside or outside a data structure, but—in both cases—it is still owned by
that data structure. In addition to a value, a cell can store cell references
(i.e. indices, references, pointers, or handles) to other cells. There are three
kinds of special cells: (1) hole is an empty cell inside the data structure that
does not store any value; (2) none is a fictive cell outside the data structure
that does not exists at all; and (3) access point is a dummy cell outside
the data structure which provides access to some specific cell inside the data
structure. For all data structures of the same type, there is only one none.
Therefore, for example, when two such data structures are merged, all cell
references to none still refer to the same fictive cell after the merge.

Concretely, when values are stored directly in array A, each array entry
is an invisible cell around the value. The position of such a cell is specified
by a pair (&A, i), where &A is the start address of array A in memory and

10

none

leaf access point

root access point

inside outside

Figure 4. Navigational view of a data structure

i is the rank of a value telling how many values are stored before it in A.
In a linked structure, the cell is a node and the position can be specified by
giving the address of that node in memory.

This view is similar to that used in the C++ standard library, where the
containers are sequences of values and values have positions. There an ob-
ject encapsulating a position is called an iterator. We call this kind of
object a navigator since there can be other operations than operator`` ,
operator´´ , operator`, or operator´ that can give access to a neighbour of
a cell. Unlike the standard, in our model, one cannot get back from none to
the data structure; one has to use one of the access points. In spite of these
differences, the important thing is that both an iterator and a navigator can
be understood as a name of the cell they refer to. This leads to natural
programs since, for example, a variable root can be used to name the root
of a tree. In particular, root is not a pointer to, a reference to, or the rank
of that cell; it is its name.

Although the interface of the binary-heap class template is identical to
that of std::priority_queue, the concept requirements for the second type
parameter are quite different. Let T be an object of that type. This data
structure is a nearly-complete binary tree that maintains its cells in breadth-
first order. So, in a broad sense, it is still a sequence. Observe that the
operations to be supported on T do not directly operate with the data stored
at the cells.

size: Return the number of cells in T.

root: Return the name of the first cell in T. Precondition: T is not empty.

last: Return the name of the last cell in T. Precondition: T is not empty.

11

z

x

u v

w

p

q

p.slide(q)

p.slide(q)

z

x

u v

w

q

p

Figure 5. Illustrating slide; p refers to a hole and q to its neighbour

expand: Make T greater by adding a new hole immediately after the last cell
of T and return the name of that cell. The cell references to and from
the added cell are to be updated accordingly.

contract: Make T smaller by removing the last cell of T. The cell references
to the removed cell must be updated accordingly. Precondition: T is
not empty.

Any container (e.g. of type std::vector) that supports the operations begin,
end, push_back, and pop_back could be adapted to realize T. The key issue is
how to update the cell references in the modifying operations.

The main difference between T and a standard-library container is that T

must be associated with a special navigator, not an iterator. In a sense, a
navigator specifies shortcuts from a cell to some other cells. However, there
is not necessarily a direct linkage between the cells, but a shortcut can be
taken based on some computation. Let p and q be two navigators that both
encapsulate a position of some cell. The operations to be supported include:

operator“: The assignment p.operator“ (q) or p “ q makes p refer to the
same cell as q.

operator*: The dereference p.operator∗() or ∗p returns a reference to the value
stored at the cell referred to by p. Precondition: The cell is inside T.

operator““ | operator“‰“: The comparison p.operator““(q) or p ““ q returns
true if p and q refer to the same cell; otherwise, it returns false. The
output of the comparison p.operator“‰“(q) is not p.operator““(q).

left | right | parent: The operation p.left() returns the name of the left
child of the cell referred to by p, or none if this leads outside T. Precon-
dition: The cell is inside T. Correspondingly, the operations p.right()

and p.parent() return the name of the right child and the parent.

slide: As the result of p.slide(q), the positions of p and q are swapped in
T. The cell references in these two cells and their neighbours are to be
updated accordingly. Preconditions: The cell referred to by p is a hole
and the cell referred to by q is a neighbour of that hole. This structural
transformation is illustrated in Figure 5.

swap: As the result of p.swap(q), the positions of p and q are swapped in T.
The cell references in and around the swapped cells are to be updated

12

Table 1. Theoretical properties of the binary-heap variants considered. The space bounds
are in bytes. Here |V|, |N|, and |N*| denote the size of the values of type V, integers of
type N, and pointers to nodes of type N in bytes, respectively. In our test set-up, |V| “ 4,
|N| “ 8, |N*| “ 8, and ε “ 3

256
. The alignment cost (given in brackets) induced by

std::allocator was measured experimentally using the space-cost micro-benchmark from
Bentley’s book [3, Appendix 3]. All variants support top in Op1q worst-case time, and
push and pop in Oplgnq worst-case time, n being the size of the data structure prior to
each operation. The worst-case complexity of extract is given below. The minus sign –
means that this operation cannot be supported efficiently.

variant space /n as nÑ8 value moves
per push/pop

extract

implicit tree
resizable array 6|V| „lgn –
pile 2|V| „lgn –
sliced array |V| ` ε|V*| „lgn –

referent tree
resizable array 6|N*| ` |V| `∆ [∆ “ 28s 1 a –
pile 2|N*| ` |V| `∆ [∆ “ 28s 1 a –
sliced array |N*| ` ε|N**| ` |V| `∆ [∆ “ 28s 1 a –

inverse tree
resizable array 6|N*| ` |V| ` |N| `∆ [∆ “ 20s 1 a Oplgnq
pile 2|N*| ` |V| ` |N| `∆ [∆ “ 20s 1 a Oplgnq
sliced array |N*| ` ε|N**| ` |V| ` |N| `∆ [∆ “ 20s 1 a Oplgnq

linked tree
threading 4|N*| ` |V| `∆ [∆ “ 12] 1 Oplgnq
bit stack [30] 2|N*| ` |V| `∆ [∆ “ 12] 1 –

finger search 3|N*| ` |V| `∆ [∆ “ 20s b 1 a Oplgnq
a Our implementation performs one default construction and two move assignments
per push, and two move assignments and one destruction per pop
b Our space-optimized implementation requires „p2|N*| ` |V| `∆qn bytes [∆ “ 12]

accordingly. Preconditions: The cell referred to by p is a hole and the
two cells are not the same. This structural transformation is otherwise
as slide, but the two cells need not be neighbours of each other.

The operations left, right, and parent have no side-effects as, for example,
operator`` for iterators, whereas slide and swap do modify the inter-cell
linkage.

The performance of the array-based approaches depends heavily on how
the dynamization of the underlying array is done. Here I rely on our ear-
lier work [19, 20, 21] and purposely only use implementations that support
operator[], push_back, and pop_back in Op1q worst-case time. The implemen-
tations used are taken from the CPH STL [11]:

resizable array: This solution is part of computing folklore so it is used
as a baseline for other worst-case-efficient implementations. The values
are split over at most two contiguous memory segments and the total
size of these segments is adjusted to the number of values using doubling,
halving, and incremental copying. A full description and analysis of this
structure can be found, for example, from [13, Appendix A.1].

13

pile: More specifically, this refers to the levelwise-allocated pile described
in [20]. The values are split over a logarithmic number of contiguous
memory segments, which increase exponentially in size and of which
only the last may be partially full. The realization of operator[] assumes
that the whole-number logarithm of a positive integer can be computed
in Op1q worst-case time.

sliced array: This solution maintains a resizable array of pointers to con-
tiguous memory segments, each of the same size, which gives its name.
As above, only the last segment may be partially full.

With these worst-case-efficient dynamic arrays, the worst-case bounds
proved for binary heaps in textbooks and other sources actually hold. The
theoretical properties of the studied implementations are summarized in
Table 1 so that the reader can grasp the big picture quickly. Based on the
theoretical properties, I find it most interesting to know what is the relative
performance of the inverse-tree and linked-tree approaches and how much
slower they are compared to the implicit-tree approach.

5. How?

I developed the framework in a few sprints; the outcome of each was a pack-
age corresponding to one of the desirable implementations. Let us examine
these packages one at a time.

5.1 Implicit structure

The UML structure diagram given in Figure 6 shows the involved classes
including their type parameters, type members, friends, data members, and
function members. The interconnections between the classes are specified
using templates, no inheritance is used. Especially, the type aliases and
friend declarations are helpful in order to understand the interconnections.

As to the sequence storing the values, any class template that has the
same interface as std::vector can be used. This sequence combined with a
rank navigator is used in the realization of the implicit-tree class template,
which is then used by the binary-heap class template. As shown in the class
diagram, only a small subset of the operations of std::vector is needed, but
the implicit tree could be made more feature-rich if necessary.

The fact that the implicit-tree class template is an adaptor of the sequence
class template is apparent from the implementation of the operations shown
in Figure 7. Albeit innocent, in expand the value type should allow default
construction, whereas, for example, std::vector does not make this require-
ment for its value type. Technically, this means that the value stored at a
hole is valid but unspecified. In terms of efficiency, a hole could even be left
uninitialized, but this is not in accordance with good programming practice.
Note that our implicit-tree implementation supports a bit larger set of op-
erations (copy/move construction, copy/move assignment, swap, and clear),
but I do not discuss this boilerplate code here.

14

implicit-tree package

value

+ default constructor
+ copy/move constructor
+ copy/move assignment

sequence

+ V: value type
+ A: allocator type
+ N: size type

+ default constructor
+ destructor
+ size() const: N
+ operator[](N) const: V const&
+ operator[](N): V&
+ push back(V const&): void
+ pop back(): void

V, A

comparator

+ V: argument type

+ default constructor
+ copy constructor
+ operator()(V const&, V const&) const: bool

V

binary heap

+ V: value type
+ T : tree type
+ C: comparator type
+ N: size type
+ S: any sequence type
– I: S::iterator type
– R: T ::navigator type
– tree: T
– less: C

+ default constructor
+ parameterized constructor(C const&, S const&)
+ destructor
+ size() const: N
+ top() const: V const&
+ push(V const&): void
+ pop(): void
– build(R, I): I
– siftup(R, V const&): void
– siftdown(R, V const&): void

V, T , C

rank navigator

+ T : owner type
– T : if is constăTą ? remove constăTą : T const
– R: rank navigatorăTą
– R: rank navigatorăTą
– N: size type
– V: T ::value type

– qV: if is constăTą ? V const : V
– friend: T
– friend: R
– owner pointer: T *
– rank: N

– parameterized constructor(T *, N)
+ default constructor
+ copy constructor
+ copy assignment
+ destructor

+ operator*() const: qV&
+ operatorÑ() const: qV*
+ left() const: R
+ right() const: R
+ parent() const: R
+ slide(R&): void
+ swap(R&): void
+ operator““(R const&) const: bool
+ operator““(R const&) const: bool
+ operator“‰“(R const&) const: bool
+ operator“‰“(R const&) const: bool

T

implicit nearly-complete binary tree

+ V: value type
+ S: sequence type
+ N: size type
+ T : implicit nearly-complete binary treeăV, Są
+ R: rank navigatorăTą
+ R: rank navigatorăT constą
– friend: R
– friend: R
– sequence: S

– operator[](N) const: V const&
– operator[](N): V&
+ default constructor
+ destructor
+ size() const: N
+ root() const: R
+ root(): R
+ last() const: R
+ last(): R
+ expand(): void
+ contract(): void

V, S

Figure 6. Classes involved in the implicit-tree package; ` means that a member is public
and – that it is private

15

V& operator[] (N i) {
return sequence [i] ;
}

N size() const {
return sequence .size() ;
}

R root() {
return R(this , 0) ;
}

R last() {
return R(this , size() ´ 1) ;
}

R expand() {
sequence .push_back(std : :move(V())) ;
return last() ;
}

void contract() {
sequence .pop_back() ;
}

Figure 7. Kernel of the implicit-tree class template; V, N, and R are type aliases for the
value type, size type, and rank-navigator type; sequence is the container of values in use

In a rank navigator, a position is represented by storing a (pointer, rank)
pair; the pointer refers to the container—the owner—that contains the
value referred to and the rank is its index within the container. A navigator
class template can be implemented in a similar manner as an iterator class
template; the set of operations being supported is just different. The imple-
mentation of some of the operations is shown in Figure 8. Note that both
slide and swap break the referential integrity by moving a value. We use std

::move to signal that the value can be moved by a move assignment, if such
an operator is available. This will also indicate that the hole is moved. In
the forthcoming packages, when the parameter of these functions is specified
to be const, they are known to guarantee referential integrity.

When operating with navigators, compared to array indices, there is some
overhead. First, in operator“ , in addition to the rank, the pointer to the
owner has to be assigned as well. Second, in left, right, and parent, an
extra if statement is needed for determining whether a position gets outside
the data structure or not. Third, in slide and swap, the ranks are swapped,
but the other navigator will be disregarded by the calling routine after per-
forming these operations. Fourth, in operator““, in addition to the ranks,
it should also be checked whether the owners are the same. On the other
hand, since the default constructor can be used to create none, it is easy to
determine whether or not a navigator refers to none using operator““.

16

qV& operator∗() const {
return (∗owner_pointer) [rank] ;
}

R left() const {
N child “ 2 ∗ rank ` 1;
i f (child ě (∗owner_pointer) .size()) {
return R() ;
}
return R(owner_pointer , child) ;
}

R right() const {
N child “ 2 ∗ rank ` 2;
i f (child ě (∗owner_pointer) .size()) {
return R() ;
}
return R(owner_pointer , child) ;
}

R parent() const {
i f (rank ““ 0) {
return R() ;
}
return R(owner_pointer , (rank´ 1) / 2) ;
}

void slide(R& neighbour) {
swap(neighbour) ;
}

void swap(R& other) {
∗∗this “ std : :move(∗other) ;
std : :swap(rank , other .rank) ;
}

bool operator““(R const& other) const {
return (rank ““ other .rank) and (owner_pointer ““ other .owner_pointer) ;
}

Figure 8. Part of the rank-navigator class template; qV, R, and N are type aliases for
the value type, rank-navigator type, and size type; owner_pointer and rank specify the
owner and the rank of the cell referred to

I warned you of headaches: const correctness may be one of the causes.
In many cases, it was necessary to provide two overloaded functions: one
for immutable objects and another for mutable objects. The problem was
severe for the rank_navigator class template since we need two classes defining
the behaviour of both. There are several alternative ways to avoid code
duplication and to define just one class template covering both cases (see,
e.g. [1]); we relied on the tools for manipulating types available at the C++
standard library (see, the header <type_traits>). As seen from the class

17

diagram, it should be possible to compare a mutable navigator to a non-
mutable one; thus, there are four versions of operator““. One detail not
shown in the class diagram is the problem with copy constructors and copy
assignments, since only three of the four versions should be supported: it
should not be possible to convert an immutable navigator (of type R) to a
mutable navigator (of type R). To solve this, we only provide two of the
operations: one from R to R (in R), another from R to R (in R), and let the
compiler generate the one from R to R (in R) automatically if needed. For
the details of the template manipulation applied, consult the source code.

Modularity also caused trouble. In the implicit-tree class, the two versions
of operator[] are private so, since navigators need them, the two navigator
classes must be friends of the implicit-tree class. Only an implicit tree should
have the permission to construct navigators so that a user does not have any
change of destroying the linkage between cells. To guarantee this, in the
rank-navigator classes the parameterized constructor is made private and
the implicit-tree class (i.e. the type of the owner specified via the template
argument) is made their friend. Also, a mutable navigator must have access
to the private data of the non-mutable counterpart, and vice versa, so these
two classes must be friends of each other.

Circular dependency on template arguments was yet another cause of
trouble. For increased flexibility, the type of a navigator could be given as
an argument for the implicit tree, but at the same time the navigator should
know the type of its owner. That is, how to write the following two lines:

using R“ cphstl : :rank_navigator<T>;
using T “ cphstl : :implicit_nearly_complete_binary_tree<V , S , R>;

By some googling, you can see that I am not the only person having this
problem. For the purpose of this essay, as an acceptable workaround, the
implicit-tree class template is fixed to rely on the rank navigators only.

Having the tree class template available, it is straightforward to write the
binary-heap class template. Basically, we can start with a textbook solution
and replace array indexing with navigator operations. To give a taste of
the implementation, the operations push and pop are described in Figure 9.
Observe that both helper functions siftup and siftdown take a navigator
as reference parameter. This guarantees the correctness provided that the
navigator follows the position of the hole, even if it does not refer to the
original position. In pop, it is permissible to contract the last leaf first after
siftdown; it will never go to this leaf because the value there cannot be of
higher priority than the value used as a substitute (i.e. the same value).

Only you, my dear reader, can answer the following question:

Q: Will these programs appear in a textbook?

In Figure 10, an example of the use of the binary-heap class template
is given. This example shows how the configuration of the class templates
can be done. Because of the default values set for the type parameters,
the binary-heap class template, as std::priority_queue, can be used by just

18

public :

void push(V const& in) {
R hole“ tree .expand() ;
siftup(hole , in) ;
∗hole “ in ;

}

void pop() {
i f (tree .size() ““ 1) {
tree .contract() ;
}
else {
R hole“ tree .root() ;
R leaf“ tree .last() ;
siftdown(hole , ∗leaf) ;
hole .swap(leaf) ;
tree .contract() ;
}

}

private :

void siftup(R& hole , V const& in) {
while (hole “‰“ tree .root()) {
R p“ hole .parent() ;
i f (not less(∗p , in)) {
break;
}
hole .slide(p) ;
}

}

void siftdown(R& hole , V const& in) {
R p“ hole .left() ;
while (p “‰“ none) {
R q“ hole .right() ;
i f (q “‰“ none and less(∗p , ∗q)) {
p “ q ;
}
i f (not less(in , ∗p)) {
break;
}
hole .slide(p) ;
p “ hole .left() ;
}

}

Figure 9. Implementations of push and pop in the binary-heap class template; V and R
are type aliases for the value type and navigator type; tree and less specify the container
and comparator in use

#include ”cphstl/binary_heap .h++”
#include ”cphstl/implicit_nearly_complete_binary_tree .h++”
#include ”cphstl/resizable_array .h++”
#include <functional> // std : : less
#include <memory> // std : : allocator

int main () {
using V “ int ;
using C “ std : :less<V>;
using A“ std : :allocator<V>;
using S “ cphstl : :resizable_array<V , A>;
using T “ cphstl : :implicit_nearly_complete_binary_tree<V , S>;
using H“ cphstl : :binary_heap<V , T , C>;

V input [] “ {3, 6 , 8 , 1 , 5 , 9 , 4 , 2 , 10, 7 , 11, 14};

H heap ;
for (V x : input) {
heap .push(x) ;
}
while (heap .size() “‰“ 0) {
heap .pop() ;
}
return 0;
}

Figure 10. Simple use case of the binary-heap class template

19

referent-tree package

value encapsulator

+ V: value type
– element: V

+ default constructor
+ parameterized constructor(V const&)
+ parameterized constructor(V&&)
+ value() const: V const&
+ value(): V&

V

node factory

+ N : node type
+ A: allocator type
+ V: N ::value type
– A′: A::rebind<N>
– Args: any argument-pack type
– node allocator: A′

+ parameterized constructor(A const&)
+ copy constructor
+ get allocator() const: A
+ create(Args&&...): N*
+ destroy(N*): void

N , A

referent nearly-complete binary tree

+ V: value type
+ S: sequence type
+ N : node type
+ F : factory type
+ N: size type
+ T : referent nearly-complete binary tree<V, S, N , F>
+ R: rank navigator<T>
+ R: rank navigator<T const>
– A: S::allocator type
– A′: A::rebind<N>
– F ′: F ::rebind<N , A′>
– A′′: A::rebind<N*>
– S′′: S::rebind<N*, A′′>
– friend: R
– friend: R
– sequence: S′′

– factory: F ′

– operator[](N) const: V const&
– operator[](N): V&
+ default constructor
+ destructor
+ size() const: N
+ root() const: R
+ root(): R
+ last() const: R
+ last(): R
+ expand(): void
+ contract(): void

V, S, N , F

Figure 11. Class templates written for the referent-tree package

specifying the value type. The extra flexibility comes from the fact that the
tree type and the comparator type can be customized, too.

5.2 Referent structure

In the referent-tree approach the sequence stores pointers to the values. This
is useful in applications where the values are in several containers at the same
time. When implementing this approach, it was necessary to write a new tree
structure referent_nearly_complete_binary_tree. To make its use possible in
the mentioned context, the manipulation of values is done outside the class.
For this, two more class templates were written: value_encapsulator can be
used to encapsulate a value, nothing else, and node_factory to create and

20

value_encapsulator()
: element() {

}

value_encapsulator(V const& v)
: element(v) {

}

value_encapsulator(V&& v)
: element(std : :move(v)) {

}

V const& value() const {
return element ;
}

V& value() {
return element ;
}

node_factory(A const& a“A())
: node_allocator(a) {

}

template <typename. . . Args>
N∗ create(Args&&... args) {
N∗ p“ node_allocator .allocate(1) ;
try {
new (p) N (std : :forward<Args>(args) . . .) ;
}
catch (. . .) {
node_allocator .deallocate(p , 1) ;
throw;
}
return p ;
}

void destroy(N∗ p) {
(∗p) .„N () ;
node_allocator .deallocate(p , 1) ;
}

Figure 12. Central parts of the value_encapsulator (left) and node_factory (right)
class templates; V and N are type aliases for the value type and node type; element and
node_allocator are the encapsulated data members

destroy any kind of nodes. No changes were necessary in the rank-navigator
class template or in the binary-heap class template. The UML structure
diagram in Figure 11 gives an overview of the new class templates.

As seen from Figure 12, the code for both the value_encapsulator and
node_factory class templates is straightforward. The encapsulator provides
three constructors, a get and a set function to read and write the stored
value. The factory class template provides a parameterized constructor,
where an allocator is given, and the two functions use the rebound allocator
to allocate space for a node and construct the node in that place (create),
and to destroy the contents of a node and deallocate the space reserved
for that node (destroy). To reuse the code for nodes whose constructor
accepts more parameters, create takes a parameter pack and forwards the
arguments as such to the constructor. For correctness, it is essential that the
constructor behaves cracefully and does not leave any partially constructed
objects behind if it fails. That is, it must be exception safe. If the contructor
throws an exception, create ensures that no memory is leaked.

Although some changes had to be done to the tree class template, the
public interface of referent_nearly_complete_binary_tree is still a superset of
that of implicit_nearly_complete_binary_tree. As can be seen from the class
diagram (Figure 11), some type rebindings are necessary in the private part
of the class definition, but this has no effect on its use. An interested reader
may again peek the source code to see how the template manipulation is
done. In essense, the changes are concentrated in the operations operator[],

21

V& operator[] (N i) {
return (∗sequence [i]) .value() ;
}

R expand() {
E∗ p“ factory .create() ;
sequence .push_back(p) ;
return last() ;
}

void contract() {
N ` “ size() ´ 1;
E∗ p“ sequence [`] ;
factory .destroy(p) ;
sequence .pop_back() ;
}

Figure 13. Kernel of the referent-tree class template; V, N, R, and E are type aliases
for the value type, size type, rank-navigator type, and encapsulator type; sequence is the
container of pointers and factory the node factory in use

using V “ int ;
using C “ std : :less<V>;
using A“ std : :allocator<V>;
using S “ cphstl : :resizable_array<V , A>;
using E “ cphstl : :value_encapsulator<V>;
using F “ cphstl : :node_factory<E , A>;
using T “ cphstl : :referent_nearly_complete_binary_tree<V , S , E , F>;
using H“ cphstl : :binary_heap<V , T , C>;

Figure 14. Configuration the binary-heap class template using the referent-tree class
template

expand, and contract, but, as seen from Figure 13, the changes are not big.
With these class templates, the binary-heap class template can be used

without modifications. A configuration example is given in Figure 14. The
algorithms used in a binary heap have not changed, but the underlying tree
structure is different. By separating the representation from the algorithms,
the beauty of the algorithms is not disturbed.

5.3 Inverse structure

In the inverse-tree approach the conception, how an array is used, is turned
upside down. Nodes are different, navigators are different, and the tree
structure is different from those used earlier. Luckily, none of the new class
templates is involved. An overview of the developed templates is given in
the UML structure diagram in Figure 15.

An inverse-tree node encapsulates a value and a rank, and provides get
and set functions for both in a way that is idiomatic for C++. The generic

22

inverse-tree package

inverse-tree node

+ V: value type
+ N: size type
– element: V
– index: N

+ parameterized constructor(V const&, N)
+ parameterized constructor(V&&, N)
+ value() const: V const&
+ value(): V&
+ rank() const: N const&
+ rank(): N&

V

inverse link navigator

+ T : owner type
– T : if is constăTą ? remove constăTą : T const
– L: inverse link navigatorăTą
– L: inverse link navigatorăTą
– N: size type
– V: T ::value type
– N : T ::node type

– qV: if is constăTą ? V const : V
– friend: T
– friend: L
– owner pointer: T *
– p: N*

– parameterized constructor(T *, N*)
+ default constructor
+ copy constructor
+ copy assignment
+ destructor

+ operator*() const: qV&
+ operatorÑ() const: qV*
+ left() const: L
+ right() const: L
+ parent() const: L
+ slide(L const&): void
+ swap(L const&): void
+ operator““(L const&) const: bool
+ operator““(L const&) const: bool
+ operator“‰“(L const&) const: bool
+ operator“‰“(L const&) const: bool

T

inverse nearly-complete binary tree

+ V: value type
+ S: sequence type
+ N : node type
+ F : factory type
+ N: size type
+ T : inverse nearly-complete binary treeăV, S, N , Fą
+ L: inverse link navigatorăTą
+ L: inverse link navigatorăT constą
– friend: L
– friend: L
– A: S::allocator type
– A1: A::rebindăNą
– F 1: F ::rebindăN , A1ą
– A2: A::rebindăN*ą
– S2: S::rebindăN*, A2ą
– sequence: S2

– factory: F 1

– operator[](N) const: N* const&
– operator[](N): N*&
+ default constructor
+ destructor
+ size() const: N
+ root() const: L
+ root(): L
+ last() const: L
+ last(): L
+ expand(): L
+ contract(): void

V, S, N , F

Figure 15. Class templates written for the inverse-tree package

23

factory for creating and destroying nodes also works for these new nodes,
so that code can be reused. Even though the navigator and tree class tem-
plates have to be rewritten, by keeping their public interface unchanged, the
binary-heap class template can be reused as well. Let us next consider the
new class templates in more detail.

We call navigators that encapsulate a pointer to a node link navigators.
Since we need other link navigators for purely linked structures, we call the
navigators used here inverse link navigators. In this case, the position
is represented by a pair of pointers, one pointing to the owner of a node
and another to the node itself. With the owner pointer we can access the
sequence and use the ranks stored at the nodes to get from a node to its
neighbours. To see the difference between a rank navigator and an inverse
link navigator, compare the corresponding operations for the two in Figure 8
(on page 16) and Figure 16.

The inverse tree is very similar to the referent tree, but the navigators
are different, so adjustments were necessary in some of the operations.
Figure 17 describes the implementations of the central operations of the
inverse_nearly_complete_binary_tree class template. As show in Figure 18,
the use of the developed templates is quite similar to the use of the tem-
plates in the earlier packages.

5.4 Linked structure

To sum up our discussion so far, the elements of a binary heap are
– a dynamic set of cells, each storing a value,
– a set of structural invariants guaranteeing that the cells form a nearly-

complete binary tree,
– a set of navigation rules showing how to get from a cell to some other

cells,
– a set of ordering invariants guaranteeing that the values stored at the

cells are in heap order, and
– a set of transformation rules showing how to reestablish the invariants

after a modification.
There are three forms of transformations: dynamization transformations
like expand and contract, structural transformations like slide and swap, and
heap-ordering transformations like siftup and siftdown. In our design, the
tree class is responsible for dynamization, the navigator class is resposible for
navigation and structural changes, and the binary-heap class is responsible
for heap order.

In a linked structure, nodes are the cells and the connections between
the nodes are hard-wired using pointers. An overview of the linked-tree
package is given in the form of the UML structure diagram in Figure 19.
Since the node-factory and binary-heap class templates can be reused, those
are not described in the diagram. Compared to the earlier representations,
in a linked representation some flexibility is lost, since the interconnections
between the components—node, tree, and navigator—are tighter. Contrary

24

qV& operator∗() const {
return (∗p) .value() ;
}

L left() const {
N rank “ 2 ∗ (∗p) .rank() ` 1;
i f (rank ě (∗owner_pointer) .size()) {
return L() ;
}
return L(owner_pointer , (∗owner_pointer) [rank]) ;
}

L right() const {
N rank “ 2 ∗ (∗p) .rank() ` 2;
i f (rank ě (∗owner_pointer) .size()) {
return L() ;
}
return L(owner_pointer , (∗owner_pointer) [rank]) ;
}

L parent() const {
i f ((∗p) .rank() ““ 0) {
return L() ;
}
N rank“ ((∗p) .rank() ´ 1) / 2;
return L(owner_pointer , (∗owner_pointer) [rank]) ;
}

void slide(L const& neighbour) {
swap(neighbour) ;
}

void swap(L const& other) {
N i“ (∗p) .rank() ;
N j“ (∗other .p) .rank() ;
(∗p) .rank() “ j ;
(∗other .p) .rank() “ i ;
(∗owner_pointer) [i] “ other .p ;
(∗owner_pointer) [j] “ p ;

}

bool operator““(L const& other) const {
return p ““ other .p ;
}

Figure 16. Part of the inverse-link-navigator class template; qV, L, and N are type aliases
for the value type, link-navigator type, and size type; p specifies the current position and
owner_pointer is used for navigation

25

N∗& operator[] (N i) {
return sequence [i] ;
}

L root() {
return L(this , sequence [0]) ;
}

L last() {
return L(this , sequence [size() ´ 1]) ;
}

L expand() {
N past“ size() ;
N∗ p“ factory .create(std : :move(V ()) , past) ;
sequence .push_back(p) ;
return L(this , p) ;
}

void contract() {
N ` “ size() ´ 1;
N∗ p“ sequence [`] ;
factory .destroy(p) ;
sequence .pop_back() ;
}

Figure 17. Kernel of the inverse-tree class template; N , N, L, and V are type aliases for
the node type, size type, link-navigator type, and value type; sequence is the container
of pointers to nodes factory the node factory in use

using V “ int ;
using C “ std : :less<V>;
using A“ std : :allocator<V>;
using S “ cphstl : :resizable_array<V , A>;
using N “ cphstl : :inverse_tree_node<V>;
using F “ cphstl : :node_factory<N , A>;
using T “ cphstl : :inverse_nearly_complete_binary_tree<V , S , N , F>;
using H“ cphstl : :binary_heap<V , T , C>;

Figure 18. Configuration the binary-heap class template using the inverse-tree class
template

to arrays, one can only get from the current node to those nodes for which
there is a direct linkage. For example, if a node only stores pointers to its
left child and right child, one cannot access the parent, not at least easily.

In fact, I implemented two forms of nodes, one that relies on the standard
three-pointer scheme—left child, right child, and parent—and another that
relies on a non-standard two-pointer scheme. The pointers are named first,
second, and third; a compact node has only the first two of these pointers. A
normal node stores a value and the pointers; the dummy nodes—root access
point and leaf access point—store only the pointers. The challenge was to
implement these node class templates such that both of them could be used

26

linked-tree package

binary-tree node

+ V: value type
+ N : binary-tree nodeăVą
– element: V
– first: N*
– second: N*
– third: N*

+ default constructor
+ parameterized constructor(V const&)
+ parameterized constructor(V&&)
+ value() const: V const&
+ value(): V&
+ left() const: N*
+ right() const: N*
+ parent() const: N*
+ set left(N*): void
+ set right(N*): void

V

link navigator

+ T : owner type
– T : if is constăTą ? remove constăTą : T const
– L: link navigatorăTą
– L: link navigatorăTą
– V: T ::value type
– N : T ::node type

– qV: if is constăTą ? V const : V
– friend: T
– friend: L
– p: N*

– parameterized constructor(N*)
+ default constructor
+ copy constructor
+ copy assignment
+ destructor

+ operator*() const: qV&

+ operatorÑ() const: qV*
+ left() const: L
+ right() const: L
+ parent() const: L
+ slide(L const&): void
+ swap(L const&): void
+ operator““(L const&) const: bool
+ operator““(L const&) const: bool
+ operator“‰“(L const&) const: bool
+ operator“‰“(L const&) const: bool
– left left case(N*, N*, N*): void
– left right case(N*, N*, N*): void
– right left case(N*, N*, N*): void
– right right case(N*, N*, N*): void

T

linked nearly-complete binary tree

+ V: value type
+ N : node type
+ F : factory type
+ N: size type
+ T : linked nearly-complete binary treeăV, N , Fą
+ L: link navigatorăTą
+ L: link navigatorăT constą
– A: F ::allocator type
– A1: A::rebindăNą
– F 1: F ::rebindăN , A1ą
– n: N
– root access: N*
– leaf access: N*
– factory: F 1

+ default constructor
+ destructor
+ size() const: N
+ root() const: L
+ root(): L
+ last() const: L
+ last(): L
+ expand(): L
+ contract(): void

V, N , F

Figure 19. Class templates written for the linked-tree package

27

root access point

leaf access point

Figure 20. Two-pointers-per-node scheme for a nearly-complete binary tree of size six

by the link-navigator and linked nearly-complete binary-tree class templates
at the same time. So this became an exercise in generic programming.

Since the two-pointer scheme is more interesting, let us concentrate on
it. An example in Figure 20 illustrates how the two pointers are used. In
general terms, a node has a pointer to its left child, which has a pointer to
its sibling, and it has again a pointer back to the start node. In more precise
terms, to cover the special cases, the two pointers are used as follows. For
a normal node, the first pointer points to its left child, but for a leaf it
points to none and for the last leaf it points to the leaf access point. For a
right child and for the last leaf, even if it was a left child, the second pointer
points to the parent; otherwise, it points to the sibling of that node. For the
root, the second pointer points to the root access point. As to the dummy
nodes, the first pointer of the root access point points to the root and the
second pointer points to itself. Finally, the first pointer of the leaf access
point points to itself and the second pointer points to the last leaf.

The node class template provides the functions left, right, and parent to
get a pointer to the left child, right child, and parent of a node (see Fig-
ure 21 on the left). As seen, they follow closely the given definitions. To
update the pointer values in a node, the set functions are more sophisti-
cated. For example, there is no direct way to set the parent pointer, but the
parent pointers are kept ajour by the set functions set_left and set_right

(see Figure 21 on the right). Moreover, when the set functions are used,
a strict protocol should be followed: A left child should be set before its
right sibling. That is, when a right child gets a value different from nullptr,
its left sibling should not be equal to nullptr. For a nearly-complete binary
tree, there is no problem in following this protocol, but the compact binary-
tree node class template cannot be used in the implementation of a general
binary tree where a node can have a right child, but not a left child.

28

N∗ left() const {
return first ;
}

N∗ right() const {
bool no_right “ (first ““ nullptr)

or (first Ñ second ““ this) ;
i f (no_right) {
return nullptr ;
}
return first Ñ second ;
}

N∗ parent() const {
bool on_cycle “ (second Ñ second Ñ

first ““ this) ;
i f (on_cycle) {
return second Ñ second ;
}
return second ;
}

void set_left(N∗ q) {
first “ q ;
i f (q “‰“ nullptr) {

(∗q) .second “ this ;
}
}

void set_right(N∗ q) {
i f (q ““ nullptr) {

i f (first “‰“ nullptr) {
(∗first) .second “ this ;

}
return;
}
(∗first) .second “ q ;
(∗q) .second “ this ;

}

Figure 21. Get functions (left) and set functions (right) in the compact binary-tree-node
class template; N is a type alias for the node type

L left() const {
N∗ below “(∗p) .left() ;
bool at_leaf “ (below ““ nullptr) or ((∗below) .left() ““ below) ;
i f (at_leaf) {
return L() ;
}
return L(below) ;
}

L right() const {
return L((∗p) .right()) ;
}

L parent() const {
N∗ above “(∗p) .parent() ;
bool at_root “ ((∗above) .parent() ““ above) ;
i f (at_root) {
return L() ;
}
return L(above) ;
}

Figure 22. Navigation operations in the link-navigator class template; L and N are type
aliases for the link-navigator type and node type; p is the encapsulated pointer to a node

29

As other navigator templates, a link-navigator class template has the
owner as its type parameter, but inside the class only a pointer to a node is
used to encapsulate a position. The primary purpose of the link-navigator
class template is restrict the access to the pointers in nodes such that sliding
and swapping are the only modifying operations allowed. Its secondary pur-
pose is to hide the existence of the dummy nodes from the user. Otherwise,
the left, right, and parent functions just rely on the corresponding functions
provided by the node class (see Figure 22).

In principle, slide is straightforward; it swaps two neighbouring nodes in
a linked tree, i.e. the present node should take the place of its neighbour and
vice versa. A potential problem with such a swap is that it may also require
a change in an access point. However, since the dummy nodes are kept
outside the data structure, they will participate a swap only indirectly as a
neigbouring node. The key feature of our design is that, at any given point
of time, there are at most two other nodes that point to a node and these
nodes can be easily accessed from that node via a few pointers. Because
swap is not as performance critical as slide and because they are so similar,
the description of swap is omitted.

Assume that we want to swap two neighbouring nodes pointed to by p

and q, respectively. First, there are two cases depending on which of the
two nodes is the parent of the other. Second, in both cases, there are four
subcases depending on whether the two nodes are left or right children of
their parents. All the cases are similar, so let us only consider one of them.
Without loss of generality, assume that p points to the parent of the node
referred to by q and that both nodes are left children of their parents. The
drawing in Figure 23 describes the configurations that are possible depending
on the type of the triangle—full, deteriorated, or none—that appear above
the node pointed to by p, between the two nodes being swapped, and below
the node pointed to by q. The code in the figure gives the details of the
pointer updates made. To simplify the scrutiny, the variable names used in
the code of left_left_case and the drawing are the same.

By looking at the code, we can make the following observations. First,
as an artefact of the framework, some extra pointer updates are made. For
the three-pointer scheme, 12 pointer updates are performed although only
10 of them are necessary. For the two-pointer scheme, up to nine pointer
updates may be done, but two of them are redundant (see Figure 23 on the
right). In total, in these schemes, 19 and 16 pointer assignments are done
per slide, respectively. Second, the two-pointer scheme performs many more
conditional branches than the three-pointer scheme. In addition to the three
branches executed before going to the subcases, the three-pointer scheme
performs one conditional branch in each set_left and set_right. This means
six conditional branches; i.e. 9 branches per slide in the worst case. For
the two-pointer scheme, both right and parent may execute one conditional
branch, set_left one, and set_right two. In total, this means up to 17
conditional branches per slide. Since, in the worst-case, both push and pop

perform slide once at each level of a heap, this overhead can be considerable.

30

public :

void slide(L const& neighbour) {
N∗ q“ neighbour .p ;
N∗ o“ (∗p) .parent() ;
N∗ r“ (∗q) .parent() ;
bool p_on_left“ ((∗o) .left() ““ p) ;
bool q_on_left“ ((∗r) .left() ““ q) ;
i f (o ““ q) {

i f (q_on_left) {
i f (p_on_left) {
left_left_case(r , q , p) ;
}
else {
left_right_case(r , q , p) ;
}
}
else {

i f (p_on_left) {
right_left_case(r , q , p) ;
}
else {
right_right_case(r , q , p) ;
}
}
}
else {

i f (p_on_left) {
i f (q_on_left) {
left_left_case(o , p , q) ;
}
else {
left_right_case(o , p , q) ;
}
}
else {

i f (q_on_left) {
right_left_case(o , p , q) ;
}
else {
right_right_case(o , p , q) ;
}
}
}

}

private :

// swap p and q , o: parent of p
void left_left_case(N∗ o , N∗ p , N∗ q) {
N∗ r“ (∗o) .right() ;
N∗ s“ (∗p) .right() ;
N∗ t“ (∗q) .left() ;
N∗ u“ (∗q) .right() ;
(∗o) .set_left(q) ;
(∗o) .set_right(r) ;
(∗q) .set_left(p) ;
(∗q) .set_right(s) ;
(∗p) .set_left(t) ;
(∗p) .set_right(u) ;

}

o

p

o

p r

p

q

p

q s

q

t

q

t

q

t u

Figure 23. Sliding operation in the link-navigator class template; L and N are type
aliases for the link-navigator type and node type; p and q refer to the two neighbour-
ing nodes to be swapped; left_right_case, right_left_case, and right_right_case
are similar to left_left_case; in the drawing, the pointers that must be updated are
thickened

31

L expand() {
N∗ q ; // parent of the new last leaf
N∗ p“ factory .create() ;
n += 1;
int const h “ __builtin_ctzl(n) ;
N∗ const ` “ (∗leaf_access) .parent() ;
i f (__builtin_popcountl(n) ““ 1) {
q “ root_access ;
i f (n ““ 1) {

(∗q) .set_left(p) ;
(∗q) .set_right(q) ;

}
else {

for (int i “ 0; i “‰“ h ; ++i) {
q “ (∗q) .left() ;
}
(∗`) .set_left(nullptr) ;
(∗q) .set_left(p) ;
(∗q) .set_right(nullptr) ;

}
}
else if ((n bitand 1) ““ 0) {
q “ ` ;
for (int i “ 0; i “‰“ h ` 1; ++i) {
q “ (∗q) .parent() ;
}
q “ (∗q) .right() ;
for (int i “ 1; i < h ; ++i) {
q “ (∗q) .left() ;
}
(∗`) .set_left(nullptr) ;
(∗q) .set_left(p) ;
(∗q) .set_right(nullptr) ;

}
else {
q “ (∗`) .parent() ;
(∗`) .set_left(nullptr) ;
(∗q) .set_right(p) ;

}
(∗p) .set_left(leaf_access) ;
(∗p) .set_right(nullptr) ;
return L(p) ;
}

void contract() {
N∗ q ; // new last leaf
int const h “ __builtin_ctzl(n) ;
N∗ const ` “ (∗leaf_access) .parent() ;
i f (__builtin_popcountl(n) ““ 1) {

i f (n ““ 1) {
q “ root_access ;
}
else {
q “ (∗root_access) .left() ;
for (int i “ 1; i “‰“ h ; ++i) {
q “ (∗q) .right() ;
}
N∗ p“ (∗`) .parent() ;
(∗p) .set_left(nullptr) ;

}
}
else if ((n bitand 1) ““ 0) {
q “ ` ;
for (int i “ 0; i “‰“ h ` 1; ++i) {
q “ (∗q) .parent() ;
}
q “ (∗q) .left() ;
for (int i “ 0; i “‰“ h ; ++i) {
q “ (∗q) .right() ;
}
N∗ p“ (∗`) .parent() ;
(∗p) .set_left(nullptr) ;

}
else {
N∗ p“ (∗`) .parent() ;
q “ (∗p) .left() ;
(∗p) .set_right(nullptr) ;

}
(∗q) .set_left(leaf_access) ;
(∗q) .set_right(nullptr) ;
factory .destroy(`) ;
n - = 1;
}

Figure 24. Dynamization operations in the linked-tree class template; L and N are
type aliases for the link-navigator type and node type; n, root_access, leaf_access, and
factory are the data members; __builtin_ctzl returns the number of trailing 0 bits
and __builtin_popcountl the number of 1 bits in the binary representation of an integer
(unsigned long)

using V “ int ;
using C “ std : :less<V>;
using A“ std : :allocator<V>;
using N “ cphstl : :compact_binary_tree_node<V>;
using F “ cphstl : :node_factory<N , A>;
using T “ cphstl : :linked_nearly_complete_binary_tree<V , N , F>;
using H“ cphstl : :binary_heap<V , T , C>;

Figure 25. Configuration the binary-heap class template using the linked-tree class
template

32

In the dynamization of the linked tree, we use the finger-search approach
when searching for the parent of the new last leaf in expand and the new
last leaf in contract. To guide the search, we rely on the magical connection
between the binary representation of n and the path from the root to the
last leaf. By reading the binary representation of n from the most significant
bit to the least significant bit, the most significant 1 bit means the root, and
in the remaining bit string each 0 means “proceed to the left child” and
each 1 means “proceed to the right child”. If the binary representation of n
has h trailing 1 bits, in expand the parent of the new last leaf can be found
by going h levels up along the right spine of a subtree, by jumping to the
sibling at level h, and by coming down h´1 levels along the left spine of the
subtree rooted by that sibling. In contract, in order to find the new last leaf
after removing the current one, the process is the opposite and we have to
consider the trailing 0 bits in the binary representation of n. Unfortunately,
these recipes do not work when n is 2h ´ 1 in expand or 2h in contract, for
some non-negative integer h. In these cases, we can find the required node by
starting the search from the root and following the left or the right spine of
the whole tree. The programs implementing these algorithms are described
in Figure 24.

Compared to the other structures, we can conclude that the linked struc-
ture is more involved. Partially, this is due to our desire to use less space
than the inverse structure. As shown in Figure 25, the developed package
can be used in the same way as the earlier packages.

6. How well?

To see how well different binary-heap implementations perform, I made some
sanity checks on my computer. Since all code developed is publicly available,
in the case of doubt, I encourage the reader to run own experiments in his
or her environment.

6.1 Test set-up

I run the experiments under Linux and I compiled the code using g`` .
During experimentation, all unnecessary system services were shut down.
The hardware and software specifications of my computer were as follows.

processor: Intel R© CoreTM i5-2520M CPU @ 2.50GHz ˆ 4

word size: 64 bits

L1 instruction cache: 32 KB

L1 data cache: 32 KB

L2 cache: 262 KB

L3 cache: 3.1 MB

main memory: 3.8 GB

operating system: Ubuntu 14.04 LTS

Linux kernel: 3.13.0-62-generic

33

micro-benchmark

int const cycle “ 74565404;
int const t “ 4294967295;

int sum(int∗ data , int∗ request , int t) {
int result “ 0;
for (int i “ 0; i “‰“ t ; ++i) {
result += data [request [i % cycle]] ;
}
return result ;
}

sequential access

for (int i “ 0; i “‰“ cycle ; ++i) {
request [i] “ i % n ;
}

jumping access

int const step “ 617;
. . .
int j “ 0;
for (int i “ 0; i “‰“ cycle ; ++i) {
j += step ;
j “ j % n ;
request [i] “ j ;
}

random access

for (int i “ 0; i “‰“ cycle ; ++i) {
request [i] “ rand() % n ;
}

Figure 26. Micro-benchmark used for testing memory performance

compiler: g`` version 4.8.4

compiler options: ´O3 ´std“ c``11 ´Wall ´DNDEBUG
profiler: valgrind version 3.10.0

profiler options: --tool“ callgrind --instr-atstart“ no --dump-instr“ yes

--collect-jumps“ yes

memory allocator: std::allocator

Three simple drivers were written which could be used to do the following
experiments:

maken: Call the constructor for a sequence of size n; the input sequence was
specified by an rvalue reference to a sequence of type std::vector which
made move construction possible, if applicable.

pushn: Execute n push operations repeatedly.

popn: Execute n pop operations after building a heap with n push operations.
Only the cost of the pop operations was measured.

For each driver, the input could be selected to be

– an increasing sequence of integers x0, 1, . . . , n´ 1y or

– a random permutation of integers t0, 1, . . . , n´ 1u.

Although the drivers were instrumented to accept any value, sequence, and
comparator type, all tests used 4-byte int values, std::less in value compari-
sons, increasing input in pushn experiments, and random input in maken and
popn experiments.

6.2 Micro-benchmark

In order to understand the consequences of memory hierarchy for the experi-
mental results, I executed a micro-benchmark which accessed an array of n
integers (4 bytes each) in different order. I consirered three types of memory

34

 0

 5

 10

 15

 20

10
3

10
4

10
5

10
6

10
7

10
8

10
9

ti
m

e
/

v
is

it
 [

n
s]

n [logarithmic scale]

normalized running times

L1 L2 L3

main

memory

random
jumping
sequential

Figure 27. Results of the micro-benchmark

accesses: sequential access, jumping access, and random access. For
each of the request sequences, the execution time of a function summing the
values was measured. The details, how the request sequences were generated
and what the micro-benchmark did, are described in Figure 26.

The results obtained are given in Figure 27; the average running time per
access is reported for different array sizes. In the figure, the sizes of the
different caches are also drawn. Four plateaus, one corresponding to each
memory level, are clearly visible in the curves. The array request caused
some noise to the results, but not much, since this array was accessed se-
quentially and it was purposely kept “small”. The coloured area shows that
a random access involves some additional costs compared to a jumping ac-
cess; this is due to the translation of virtual addresses to physical addresses.

When the size of the array reached that of main memory, the time per
random access rapidly increased to 1.7 ms, which is a factor of 100 000 or
more higher than the time per random access in main memory. Definitely,
one wants to keep the data structures small in order to process the data in
main memory. When these micro-benchmarks were run the virtual-memory
support was on; in the later experiments no swap space was reserved for the
virtual-memory system so we could be sure that the experiments were run
in main memory. It happened that an experiment was killed by the system
because the space demand became too large.

35

Table 2. Average running time [ns] per n; structure: binary heap; tree: implicit
nearly-complete binary tree; optimization: none.

std::vector resizable array pile sliced array
n maken pushn popn maken pushn popn maken pushn popn maken pushn popn

210 13 20 53 23 27 81 35 53 120 27 48 133
215 19 33 100 24 41 133 35 100 194 31 73 215
220 20 45 156 25 56 206 35 112 329 31 101 336
225 20 51 321 25 76 388 34 166 817 31 129 687

To avoid giving this kind of plots every time, I used Figure 27 as a guide-
line and only report running times for four values n P

210, 215, 220, 225

(
.

The rationale is that these values fall on the intervals of input sizes corres-
ponding to each of the four plateaus, assuming that the data structure was
in-place and only stored integers. A data structure that uses more memory
will be challenged to do memory accesses that are more expensive than those
typical for the present plateau.

To avoid any anomalies with input generation and CPU timing, each test
was repeated t “ maxt2, 225/nu times. For some data structures, for the
largest instance, only one repetition was done to avoid “out-of-memory”
signal. If a test required T pn, tq time, I always report the normalized time
T pn, tq{pnˆ tq, i.e. the average running time per value or operation.

6.3 Relative performance

In the first round of experiments, I wanted to test the relative performance
of the different approaches. The goal was to provide some guidelines for the
users of the framework:

– How much slower is a worst-case-efficient data structure compared to
a structure that performs well in the amortized sense?

– How much slower is a space-optimized structure compared to an unop-
timized one?

– How expensive should the value moves be before it is worth to use the
referent, inverse, or linked structures?

– How expensive is it to provide referential integrity?

All array-based structures were tested with four different dynamic-array
implementations: (1) std::vector, which is know to provide good perform-
ance in practice; and the (2) resizable array, (3) pile, and (4) sliced array
taken from the CPH STL [19], which are known to have good worst-case
performance. The test results are reported in Table 2, Table 3, Table 4, and
Table 5; each table covers one of the developed structures. Recall that the
theoretical properties of these structures are listed in Table 1 (on page 12).

As confirmed by the micro-benchmark, random accesses can be consid-
erably slower than sequential accesses. Indirection means random accesses.

36

Table 3. Average running time [ns] per n; structure: binary heap; tree: referent
nearly-complete binary tree; optimization: none.

std::vector resizable array pile sliced array
n maken pushn popn maken pushn popn maken pushn popn maken pushn popn

210 48 53 85 59 62 122 71 90 160 61 81 159
215 54 67 153 61 75 207 71 140 311 66 106 275
220 54 80 457 59 101 518 71 158 958 67 139 670
225 56 89 970 60 110 1 026 70 211 2 130 67 169 1 351

Table 4. Average running time [ns] per n; structure: binary heap; tree: inverse
nearly-complete binary tree; optimization: none.

std::vector resizable array pile sliced array
n maken pushn popn maken pushn popn maken pushn popn maken pushn popn

210 51 78 111 56 94 123 69 126 157 58 109 133
215 54 105 262 57 130 285 71 183 349 60 157 290
220 57 160 1 038 57 200 1 291 71 268 1 399 62 238 1 372
225 57 207 2 534 59 258 3 061 70 323 3 199 62 292 3 485

Table 5. Average running time [ns] per n; structure: binary heap; tree: linked nearly-
complete binary tree; optimization: none.

three pointers two pointers
n maken pushn popn maken pushn popn

210 63 132 156 66 187 182
215 70 180 300 74 257 341
220 73 228 1 102 77 353 1 453
225 73 a 270 a 2 517 a 76 445 3 335

a Only one repetition; for two rep-
etitions the structures took too
much space and the experiment
was killed by the system.

In this light, there are no big surprises in the results obtained. Albeit, the
following points are worthy of attention:

– An implicit structure is an order of magnitude faster than the other
three alternatives. Use one of the other structures only if there is a
good reason for that. One such reason could be expensive value moves.
Even in this case one should probably experiment whether the referent
structure leads to a better performance.

– Memory freeing makes pop for the implicit structure a factor of two

37

slower. If this is not an important property, it is better to use std::

vector that does not free the allocated space. On the other hand, in an
application that is supposed to run forever, one should consider using
some other dynamic array.

– When the problem instances reach the size of main memory, it is impor-
tant to use a space-efficient data structure. In such situation, the use of
a space-consuming resizable array and a three-pointer linked structure
cannot be recommended.

– For all structures, pop is an order of magnitude slower than push. In
the case of repeated push operations, most of the data on a path from
a new leaf to the root are cached. Actually, in this use case the cache
behaviour is asymptotically optimal, provided that the size of the cache
is reasonable [5]. In the case of random pop operations, it is probably
that, at the lower levels of the heap, the visited data are not cached
which means cache misses.

– For the inverse structure, the type of dynamic array did not play a
significant role. Random memory accesses dominate the overall costs
so the details in the array implementation seem to be less important.

– A pile uses more memory than a sliced array and it was slower in almost
all experiments; if it was faster, it was only marginally so. Therefore,
I left it out of the subsequent experiments.

– A linked structure can be competitive to an inverse structure, but the
overhead caused by node swapping is clearly visible.

6.4 Performance of the competitors

To ensure that the framework does not have any obvious shortcomings, in
the second round of experiments, it was natural to consider how well do
the competitors perform in the same test set-up. The following binary-heap
implementations were selected for this comparison.

– std::priority_queue shipped with g`` . Be aware that both std::make_heap

and std::pop_heap—used by the constructors and pop, respectively—
implemented siftdown in a bottom-up manner [22, Exercise 5.2.3–18]
by going to a leaf following the dominant path of children and finding
the correct place of the substitute on the way back up along the same
path.

– Williams’ original array-based implementation converted from Algol to
template-based C++, but still using gotos.

– Jensen’s referent binary-heap implementation taken from the CPH
STL; it uses the same std::make_heap, std::push_heap, and std::pop_heap

functions as std::priority_queue. In the original version, the sequence
storing the references was fixed to be of type std::vector. Using the
rebinding tricks from Section 5.2, the data structure was extended to
employ other types of dynamic arrays as well.

– The single-heap framework that relied on the inverse approach and
swapped nodes as recommended in [10, Section 6.5]. This program was

38

Table 6. Average running time [ns] per n for the archetype experiments; structure:
std::priority_queue shipped with g``

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 4 21 39 16 a 54 101 21 b 62 127
215 7 30 69 20 a 77 151 24 b 96 197
220 9 42 146 21 a 104 231 24 b 126 297
225 10 52 557 21 a 139 395 25 b 153 596
a Construction from resizable array, not from std::vector
b Construction from sliced array, not from std::vector

Table 7. Average running time [ns] per n for the archetype experiments; structure:
array-based binary heap programmed by Williams [36]

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 4 14 37 10 24 55 14 31 86
215 11 19 77 17 34 92 22 47 144
220 11 25 124 17 49 176 22 63 261
225 11 31 283 17 56 622 22 79 869

Table 8. Average running time [ns] per n for the archetype experiments; structure:
referent binary heap programmed by Jensen

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 42 53 76 55 109 118 57 108 146
215 48 62 196 58 142 261 61 144 259
220 71 80 1 024 80 191 1 270 85 200 956
225 75 92 2 661 83 228 2 993 86 239 2 273

Table 9. Average running time [ns] per n for the archetype experiments; structure:
inverse binary heap programmed by Edelkamp and Katajainen [18]

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 * 64 85 * 80 128 * 86 144
215 * 76 173 * 97 239 * 116 260
220 * 98 709 * 128 967 * 156 1 173
225 * 116 1 985 * 153 2 334 * 189 3 089

* Non-trivial constructor was not provided

39

Table 10. Average running time [ns] per n for the archetype experiments; structure:
purely linked binary heap proposed by Goodrich et al. [16]

three pointers
n maken pushn popn

210 49 57 77
215 53 68 147
220 59 82 607
225 60 a 94 a 1 415 a

a Only one repetition

written by Edelkamp and Katajainen [18], and used in two earlier ex-
perimental studies [8, 12]. The top-down binary-heap heapifier follows
closely the guidelines given by Floyd [15].

– A purely pointer-based implementation as described in the book by
Goodrich et al. [16]. Finger search was done according to the guidelines
given in [16, Exercise C-7.9]. This version swaps the values inside the
nodes, not the nodes themselves.

For an overview of the implementation of push in these programs, see Figure
3 (on page 7).

The experimental results for these competitors are reported in Table 6,
Table 7, Table 8, Table 9, and Table 10, respectively. When discussing the
results, I consider the four approaches one at the time.

Of the array-based solutions (see Table 2, Table 6, and Table 7), Williams’
original program was a clear winner. However, it constructs a heap by
repeated insertions, which can lead to Θpn lg nq worst-case running time;
the test case triggered its average-case behaviour which is Opnq [17]. On the
other hand, as the pushn experiment shows, this is not necessarily a disaster
since the cache behaviour is asymptotically optimal. The maken experiment
reveals that heap construction is not done well enough in our framework.
The reason is that Floyd’s [15] heap-construction algorithm sets additional
requirements for the nearly-complete binary tree; it should be possible to
access the nodes in reverse breadth-first order which works fine for an array,
but not for a tree. In the tested version, a heap was built recursively, though
its worst-case behaviour was still linear (see, e.g. [16, Section 7.3.5]).

In the pushn experiment, Williams’ original was faster than the other two.
After some profiling, I found two reasons why std::priority_queue was so
slow. First, it relies on fast iterator operations. For the more advanced dy-
namic arrays, these operations are not always as fast as the corresponding
operations for pointers. Second, in array indexing, std::priority_queue used
signed integers, whereas the other two used unsigned integers. By running
the instruction-cost micro-benchmark from Bentley’s book [3, Appendix 3],
I could verify that, in my computer, division was a bit slower for signed
integers than for unsigned integers. Even though the same arithmetic oper-
ations were executed, the difference in types could explain the difference in

40

overall performance.
From the results of the popn experiment, two observations can be made.

First, for std::priority_queue, for the largest instance, a resizable array gave
better results than std::vector. This is an indication that occasional global
rebuildings can be harmful since some useful information will be flushed out
from the caches. In a resizable array, rebuildings are done incrementally,
so only part of a cache will be reserved for the rebuilding process. Second,
our framework is again seen to have some overhead compared to Williams’
original. One reason is that Williams made sure that the last leaf always
had a sibling so he could avoid one branch in the inner loop of siftdown.

The results for the referent structures (see Table 3 and Table 8) were sur-
prising since the specialized program was sometimes slower than the frame-
work. Especially, for the largest problem instance, Jensen’s pop was a factor
of 1.5–3 slower. In principle, this function just called std::pop_heap. Profiling
showed that, in a profiling session for n “ 220 using std::vector, the following
six functions used almost 90 % of all clock cycles:

– operator` for iterators 28.2 %
– copy constructor for iterators 14.5 %
– operator∗ for iterators 10.3 %
– std::__adjust_heap (siftdown) 24.3 %
– less_ref 6.5 %
– std::less 4.7 %

Compared to our implementation (see Table 13), the relative cost of navi-
gators was about the same as that of iterators, the relative cost of the heap
and tree together was around 28 %, and the relative cost of value compari-
sons was a bit smaller, but this could not explain the difference. The results
are understandable if the corresponding operations were cheaper for our
implementation.

Of the two frameworks relying on the inverse approach (see Table 4 and
Table 9), the one written by Edelkamp and Katajainen was clearly superior.
Seems that my fear that the earlier framework was not good enough was
unjustified. But a sliced array makes the heap operations slower and a
purely linked structure can challenge the inverse structure. The two-pointer
version uses less space than the inverse version even with a sliced array and
sometimes the three-pointer version was faster. The framework used in the
earlier experimental studies is more general than the one presented in this
essay. Probably, by specializing it somewhat, it could be improved. Based
on the profiler data, it was difficult to see how to improve the framework
presented here since the costs were split across the classes.

When comparing the results for the implicit approach (see Table 2, Table 6,
and Table 7) and those for the linked approach using value swaps (see
Table 10), it must be concluded that the latter does not have a niche in
the market. On the one hand, it was slower than array-based solutions,
and, with a few exceptions, this was true even for the worst-case ones. On
the another hand, it cannot guarantee referential integrity. However, the re-
sults give us a deeper understanding of the costs involved in node swapping.

41

For integer data, a value swap is definitely a cheaper alternative to a node
swap requiring 16 pointer assignments and up to 17 conditional branches.

6.5 Fine-tuning the framework

In the third round of experiments, I wanted to understand what was behind
the obtained results and how to improve them if possible. It was time to
write some experimental code and do some more profiling. In all profiling
experiments, in the array-based implementations I used std::vector and in
the linked alternative I used the three-pointer version. Before seeing what
the profiler will tell us, I recommend that you stop reading the essay for a
while and think what would be your answer to the following question.

Q: Where are the performance bottlenecks in the programs under consider-
ation?

All four versions run exactly the same constructor, push, and pop function.
As the first approximation, the bottleneck of push must be the inner loop of
siftup, and the bottleneck of both constructor and pop must be the inner loop
of siftdown. Thus, overall performance seems to depend on the efficiency of
the small functions called inside these inner loops.

To get an exact answer, I used a profiler to collect the frequency how
often individual functions were called and what were their share of the total
cycle consumption. In all profiling sessions, the problem size n was set
to 220 and the number of repetitions t to 4. Instrumentation was progra-
matically enabled before making the constructor, push, and pop calls, and
disabled after these calls. Table 11, Table 12, and Table 13 summarize the
information produced by the profiler for the maken, pushn, and popn experi-
ments, respectively. The problem with the generated data was that it was
detailed. Therefore, the summary tables list the costs per class by collecting
together the costs incurred by, or indirectly associated with, the member
functions of each class. Observe that the sum of the individual costs is less
than 100 % because of rounding and because some work done outside could
not be directly associated with any of the classes.

According to the 80/20 law, 80 % of the execution time of a program is
spent executing 20 % of the code. I will leave it for you to decide if this law
is valid for this framework. Often, three to four classes dominate the overall
costs, but depending on the way the framework is used, these classes vary.
However, it is clear that the navigators are in the centre of the performance
equation. If they could be improved, the overall performance will improve.

Let us stop talking and go to the business. Recall our to-do list:

Q: How could heap construction, push, and pop be improved?

Next I will explain what I did. The code is for your eyes only; a library
user should not know much about the optimization details. In fact, I am
not proud of all the hacks used, but you can peek the source code if you are
interested. Here I will only give the general idea behind each optimization.

42

Table 11. The costs [%] associated with different classes; n “ 220; experiment : maken;
optimization: none

implicit referent inverse linked
class std::vector std::vector std::vector three pointers
heap 9.4 7.0 8.6 9.6
tree 12.4 11.2 9.6 8.5
navigator 41.7 33.6 30.5 31.2
sequence 17.0 11.4 10.7 0.9
iterator 9.2 7.2 7.3 8.1
node – 3.3 6.3 19.8
factory – 2.8 3.3 1.5
allocator 6.9 6.9 21.4 18.1
comparator 2.0 1.6 1.6 1.8

Table 12. The costs [%] associated with different classes; n “ 220; experiment : pushn;
optimization: none

implicit referent inverse linked
class std::vector std::vector std::vector three pointers
heap 13.7 12.2 12.4 10.6
tree 14.6 15.3 14.3 5.1
navigator 56.0 50.4 40.3 40.2
sequence 10.3 8.7 11.7 –
node – 4.6 12.3 36.4
factory – 0.2 0.6 0.2
allocator 1.2 4.3 4.4 2.8
comparator 3.5 3.1 3.2 2.7

Table 13. The costs [%] associated with different classes; n “ 220; experiment : popn;
optimization: none

implicit referent inverse linked
class std::vector std::vector std::vector three pointers
heap 14.0 12.8 14.0 14.2
tree 13.9 15.3 12.0 1.4
navigator 52.8 48.3 45.0 47.3
sequence 14.3 13.3 12.7 –
node – 4.7 10.2 31.2
factory – 0.1 0.1 0.1
allocator 0.3 1.3 1.4 1.0
comparator 4.3 4.0 4.3 4.4

43

(1) I applied Williams’ optimization in siftdown so that it was always called
for odd n. Hereafter it was not necessary to consider the special case—
either inside or outside the inner loop—whether a cell has one child or
not. In heap construction, a heap of size n or n ´ 1 was constructed,
depending on which one was odd, and the last value, if any, was pushed
into the heap afterwards. In pop, if n was even before the call, the last
value was detached from the tree and used as a substitute for the value
removed from the root. On the other hand, if n was odd before the
call, the substitute was kept in its place and the last leaf was removed
from the tree first after siftdown.
To facilitate this change, the tree structures were extended with three
new operations: detach which cuts off the last cell from the tree and
returns its name, attach which moves a detached cell back to the tree,
and remove which removes a detached cell from the custody of a data
structure. No fancy data structures were maintained to keep track of
the cells outside a data structure, but still in its custody; it was the
responsibility of the user to ensure that no memory was leaked. Fur-
thermore, for the structures that cannot guarantee referential integrity,
the maximum number of detached cells was limited to one. Hence, the
last cell could just be hidden from the heap if necessary.
When a hole was swapped with a detaiched cell, it was no more neces-
sary to support a general swap operation for cells, but a simpler replace

operation could be used, which replaced a hole with a detached cell
and moved the hole outside instead. For the linked version, about half
of the pointer updates were saved this way.

(2) I extended the tree classes to provide a constructor that constrcuted a
tree of populated cells in one go, instead of repeatedly adding holes and
letting the heap-building procedure populate and build the heap. To
make this extension possible, the sequence class had to allow move/copy
construction from a given sequence and a function reserve. For the
implicit structure this reduced the expected number of value moves
performed from „4.74n to „1.58n (measured experimentally). Even
after this change, in the node-based structures, the nodes were still
created one by one in order to be able to destroy them.

(3) I removed recursion from the heap-construction procedure. Starting
with a populated tree of values, the iterative procedure made a post-
order traversal of the tree and called siftdown at each branch node
after both of its subtrees contained a heap. The traversal was done
by maintaining a bit stack in a computer word telling whether the
nodes visited above the current node are left or right children. Logical
bitwise operators were used when manipulating the bit stack. Thus,
heap contruction was done using Op1q words of additional memory.

(4) I extended the navigators to provide two additional operations: is_root

and is_leaf. Then I insisted that the other programs should follow a
strict protocol and call left and right only if a node is not a leaf, and
parent only if the node is not a root. Hereafter all the if-outside checks

44

Table 14. Average running time [ns] per n; structure: binary heap; tree: implicit
nearly-complete binary tree; optimization: tuned.

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 5 15 33 9 26 64 17 40 104
215 10 22 75 16 40 115 23 59 172
220 10 29 123 16 56 179 24 78 267
225 10 36 278 15 69 344 23 108 559

could be removed from the navigation functions.

(5) As to the semantics of slide and replace, I made an addition that, after
the operation, the reference to the other node is undefined and cannot
be used. This was only relevant for the rank navigators which could not
retain referential integrity. Hereafter the call of std::swap inside slide

and replace could be replaced with an assignment. In some cases, this
swap used more than 10 % of the total running time.

(6) I made the linked structure fully symmetric by introducing two more
dummy nodes, a sibling of the last leaf and a sibling of the leaf-access
point. Hereafter the triangles were perfect, except the topmost triangle
involving the root-access point, but this did not require any special han-
dling. Due to Williams’ optimization, the dummy for the last leaf did
not cause any harmful interference in pop because this dummy was not
in use when the number of nodes was odd. To utilize the symmetry,
I added a few new functions to the node classes with the aim that
slide and replace would do exactly the required pointer updates and
that conditional branches could be avoided as far as possible. The two
set functions were complemented with four other set functions that op-
erated with triangles (set_top_corner, set_left_corner, set_right_corner,
and make_triangle) and two reset functions (reset_left and reset_right)
that reset a pointer to nullptr. After the redesign, in the two-pointer
case, at most 14 pointer assignments and four conditional branches were
executed per slide. Three of the conditional branches were needed to
determine in which case we are and one to check whether the bottom-
most triangle exists or not. Using conditional moves and an array of
function pointers, the number of conditional branches could be reduced
from four to one, and the remaining branch was easy to predict, but
this branch optimization did not pay off.

I expected that these optimizations would give a normal code-tuning im-
provement in the running time (up to 20 % and, if I am lucky, more). By
performing an additional round of experiments I could confirm that code
tuning was effective, but, as expected, it did not help much in cases where the
memory performance was the bottleneck (compare the results in Table 14,
Table 15, Table 16, and Table 17 to those reported earlier in Table 2, Table 3,

45

Table 15. Average running time [ns] per n; structure: binary heap; tree: referent
nearly-complete binary tree; optimization: tuned.

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 40 48 66 45 62 104 51 71 135
215 48 53 132 54 76 183 58 93 236
220 48 62 431 54 92 512 60 114 603
225 47 72 1 023 54 108 1 002 60 145 1 290

Table 16. Average running time [ns] per n; structure: binary heap; tree: inverse
nearly-complete binary tree; optimization: tuned.

std::vector resizable array sliced array
n maken pushn popn maken pushn popn maken pushn popn

210 52 77 98 53 82 127 64 97 142
215 57 104 254 59 113 285 69 138 296
220 57 143 1 012 60 162 1 219 72 190 1 314
225 56 173 2 658 60 204 2 847 72 246 3 285

Table 17. Average running time [ns] per n; structure: binary heap; tree: linked
nearly-complete binary tree; optimization: tuned.

three pointers two pointers
n maken pushn popn maken pushn popn

210 55 117 108 59 144 124
215 63 158 221 67 194 262
220 67 192 963 70 254 1 291
225 68 a 223 a 2 286 a 69 337 2 957

a Only one repetition.

Table 4, and Table 5). After these optimizations the performance of the
programs generated by the framework could match, if not exactly at least
almost, that of their competitors. In some cases, the generated programs
were significantly faster.

The only unpleasant feature of these optimizations was that they made
the use of the framework more complicated. At least for me, the debugging
sessions tended to become longer since at some points I had not followed
the protocols set out for the optimized functions.

46

7. What if?

In this section you are allowed to ask questions, also such that I cannot
answer; an answer may require some further research.

Let us start with some questions that I can answer.

Q: Which kind of changes would be necessary if support for extract was
required?

Conceptually, this would require that the binary heap provided locators
(navigators without any navigation abilities); in our current implementa-
tion navigators were private. Then insert should return a locator to the
inserted cell, which can be used by extract to release that cell. The actual
implementation of extract is not difficult: Replace the cell being removed
by the last cell (not a value), and call both siftdown and siftup, starting
from the new location of the replaced cell. This would fix the heap order
independent of whether the priority was increased or decreased at the place
of the replacement. If you want to see some real code, inspect, for example,
the implementation of extract in the single-heap framework in [18].

Q: You say locators, should there be support for iterators too?

In the implementation of expand and contract for a nearly-complete binary
tree, we saw that it is not difficult to find a successor or a predecessor of a cell.
Therefore, there is no problem in supporting operator`` and operator´´ for
a locator. However, these are not necessarily constant-time operations. Also,
operator∗ should not be allowed to modify the cell contents, because this
would give an opportunity for the user to break the invariants maintained.

Q: At some point you mentioned merge; was this meant seriously?

For the linked representation, two binary heaps of size m and n can be
merged in Oplgm ˆ lg nq worst-case time [27]. However, I have never seen
this algorithm implemented. I did not give it a try since, if I really needed
a mergeable priority queue, I would use some of the competitors, e.g. many
versions of binomial queues [34] are readily available at the CPH STL.

Q: Since there are many different representations of a nearly-complete bi-
nary tree, at some point it might be necessary to convert one representation
to another. Where should these conversions be implemented?

It would be natural to provide for any nearly-complete binary tree, say of
type T , two types of copy constructors, one creating a new copy from a tree
of type T and another template-based version creating a new copy from a
tree of type X , where the concept requirements for X and T are the same. In
order to implement this idea, in the tree class templates the allocator types
must be made public and the class templates must provide get_allocator

function as standard-library containers.
Standard-library containers do not have constructors from containers or

ranges, only from iterator pairs, but the standard library could be extended

47

to provide these more general constructors, too. Now, for example, the
constructor of std::priority_queue relying on a resizable array only allows a
construction from a resizable array, not from a std::vector. When trying the
construction via iterator pairs, the implementation turned out to come with
a new set of concept requirements. For example, the dynamic arrays should
provide general insert accepting iterator pairs, i.e. some kind of multiple
push_back at one go, but such operation was not available in the dynamic
arrays taken from the CPH STL.

Q: What if you used multiary heaps instead of binary heaps? Are they not
faster?

After the publication of the paper by Ladner and LaMarca [24], many
people argue that multiary heaps are faster than binary heaps. Sanders [28]
showed—and my experiments confirm his observation—that an engineered
version of a binary heap, e.g. the tuned version discussed in this essay, is
equally fast as, or faster than, a 4-ary heap; 8-ary or 16-ary heaps are already
slower. We have seen that cache behaviour really matters. If it is important
in your application, you should study Sanders’ work before writing your own
cache-efficient priority queue.

Q: [Stefan Edelkamp] In the work you mentioned, Sanders uses an inser-
tion buffer to improve push and an extraction buffer to improve pop. Does
buffering make sense in your framework too?

Yes, two layers will do better even without Sanders’ fancy second layer.
For binary heaps, buffering was proposed by Wegner and Teuhola [35] and,
according to the experiments carried out by Bojesen [4], it worked well when
the size of the buckets was set to M{4, M being the size of the largest cache
in bytes (L3 cache in my computer). In my experiments, for the largest
instance (n “ 225), the running time of pop almost halved when buffering
was used compared to Williams’ original program, and for other instances,
no slowdown was experienced. To use this idea in the framework, it would
be necessary to write yet another version of the binary-heap class template.
One should also be aware that after this change the running times of push

and pop are again amortized, not worst-case.

I know that you expect me to come outside my comfort zone; there must
be some wilder questions to pose.

Q: By Table 1, when you asked for four bytes from std::allocator, you got
32 bytes. Does this mean that I should use a custom allocator in every
performance critical application?

If you cannot afford this type of waste, you have to. In the experiments
I have done, a pool allocator has not improved the runtime performance, so
it is necessary to use a custom allocator only if the space usage becomes a
problem. Observe also that, when I talk about the amount of space used,
I mean the amount of allocated space. I do not consider memory fragmenta-

48

tion. If all allocated blocks are of 32 bytes or larger, with high probability,
the amount of wasted space due to external fragmentation will be small
because a released block can be used for other purposes as well.

Another aspect related to memory management is memory layout. In
another study [14], we played with different memory layouts for a nearly-
complete binary tree. It turned out that, for large problem instances, a
cache-friendly layout could speed up access operations by a factor of two. On
the other hand, for small problem instances, the performance slowdown was
significant because the navigation within the tree required more CPU time.
One of the design goals of the C++ standard library was to separate memory
management from data structures. Unfortunately, the cache-friendly layout
considered was highly dependent on the data structure so this separation
was not achieved.

Q: How do you think frameworks will change the marketplace?

I see frameworks everywhere; they should be more visible in textbooks
and software libraries. A textbook on data structures should present all
data structures in the form of customizable frameworks, simply because the
one-size-fits-all approach does not work in software production. Some books
have tried this using the object-oriented approach, but, in my opinion, this
has been a failure. At the moment, I believe in the template-based approach,
but it may be that I am too optimitic about its success. And a software
library on data structures should provide customizable frameworks, instead
of offering one implementation per data structure. But also here I can be
wrong because of the usability issues involved.

8. Afterword

To make the implementation of the framework manageable, between the
cell structure and the operations provided for the user, I used a small set of
primitives as middleware which facilitated navigation within, dynamization
of, and transformation of the cell structure. Because of this middleware, the
algorithms used when implementing the high-level operations could be kept
unchanged. That is, by separating the representation from the operations,
the beauty of the algorithms could be retained.

The foundation for the framework described, implemented, and bench-
marked was laid down in the textbook of Goodrich et al. [16]. The basic
idea was solid, but (1) their implementation contained minor inconsistencies
[16, Section 7.3.3] (e.g. a pointer-based implementation does not need any
initial capacity), (2) the underlying tree implementation had some extra fat
[16, Section 6.4.2] (e.g., as pointed out by the authors, the external nodes
need not be stored explicitly), (3) the crucial details of the pointer-based
solution were left for the exercises [16, Section 7.5], and (4) the proposed
class template was only dry run. In this essay I filled in the gaps.

There are two things that I would like to see improved in most textbooks
on data structures and algorithms:

49

(1) Instead of just describing how to implement a dynamic array that has
good amortized behaviour (as, e.g. in [10, Section 17.4]), one should
describe an implementation that supports the fundamental operations
(operator[], push back, and pop back) in Op1q worst-case time as space
efficiently as possible (e.g. describing different versions of piles [20]).

(2) Instead of assuming that new (malloc in C) and delete (free in C) are
magically available, describe how these primitives can be implemented
in Op1q worst-case time (e.g. using the colouring algorithm [25]). Tell
also the bad news about memory fragmentation [26, 37].

As should be clear from this essay, questions related to dynamization and
memory management can be pivotal for understanding the performance of
data structures.

As shown, the efficiency of different variations of a binary heap can vary
a lot. However, my experimentation was by no means exhaustive. It is
here that crowdsourcing comes into the picture. The programs described,
including benchmarking tools, are publicly available, so anyone interested
can test how different alternatives work in his or her environment. Based on
the experimental results, a serious user can then customize the framework
for his or her needs.

I have to warn the reader for not becoming overly enthusiastic about
adaptable component frameworks. It is more complicated to implement
a framework capable of producing several data structures than to imple-
ment a single data structure. Also, maintenance of such frameworks can
be challenging. If a change is necessary in one of the implementations or if
the framework is to be extended, the developer must understand the conse-
quences of such a change in all the underlying implementations. Masochistic
programmers call this fun.

The last point that I want to make is whether John and Jane Doe are
ready for using a customizable software library? Maybe the use is too com-
plicated; in particular, if C++ templates are involved. I do not know; you
tell me.

Software availability

The programs described, implemented, and benchmarked are available via
the home page of the CPH STL (www.cphstl.dk) in the form of an electronic
appendix and a tar file.

Acknowledgements

I thank Max Stenmark for the discussions that helped me to get the final
details of the framework in place.

50

References

[1] M. Austern, Defining iterators and const iterators, C/C++ User’s Journal 19, 1
(2001), 74–79.

[2] M. H. Austern, B. Stroustrup, M. Thorup, and J. Wilkinson, Untangling the bal-
ancing and searching of balanced binary search trees, Software Pract. Exper. 33, 13
(2003), 1273—-1298.

[3] J. Bentley, Programming Pearls, 2nd Edition, Addison-Wesley, Inc. (2000).
[4] J. Bojesen, Heap implementations and variations, Written Project, Dept. Comput.

Sci., Univ. Copenhagen (1998). Available at http://www.diku.dk/~jyrki/PE-lab/
Jesper/heaplab/heapsurvey_html/Welcome.html.

[5] J. Bojesen, J. Katajainen, and M. Spork, Performance engineering case study: Heap
construction, ACM J. Exp. Algorithmics 5 (2000), Article 15.

[6] G. S. Brodal, A survey on priority queues, Space-Efficient Data Structures, Streams,
and Algorithms, LNCS 8066, Springer (2013), 150–163.

[7] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick, Resizable
arrays in optimal time and space, WADS 1999, LNCS 1663, Springer (1999), 37–48.

[8] A. Bruun, S. Edelkamp, J. Katajainen, and J. Rasmussen, Policy-based benchmark-
ing of weak heaps and their relatives, SEA 2010, LNCS 6049, Springer (2010),
424–435.

[9] The C++ Standards Committee, Standard for Programming Language C++, Working
Draft N4296, ISO/IEC (2014).

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
3rd Edition, The MIT Press (2009).

[11] Dept. Comput. Sci., Univ. Copenhagen, The CPH STL, Website accessible at http:
//www.cphstl.dk/ (2000–2015).

[12] S. Edelkamp, A. Elmasry, and J. Katajainen, The weak-heap family of priority queues
in theory and praxis, CATS 2012, Conferences in Research and Practice in Informa-
tion Technology 128, Australian Computer Society, Inc. (2012), 103–112.

[13] A. Elmasry and J. Katajainen, Worst-case optimal priority queues via extended regu-
lar counters, E-print arXiv:1112.0993, arXiv.org (2011).

[14] A. Elmasry and J. Katajainen, Branchless search programs, SEA 2013, LNCS 7933,
Springer (2013), 127–138.

[15] R. W. Floyd, Algorithm 245: Treesort 3, Commun. ACM 7, 12 (1964), 701.
[16] M. T. Goodrich, R. Tamassia, and D. M. Mount, Data Structures and Algorithms in

C++, John Wiley & Sons, Inc. (2004).
[17] R. Hayward and C. McDiarmid, Average case analysis of heap building by repeated

insertion, J. Algorithms 12, 1 (1991), 126–153.
[18] J. Katajainen, Priority-queue frameworks: Programs, CPH STL Report 2009-7,

Dept. Comput. Sci., Univ. Copenhagen (2009).
[19] J. Katajainen and A. M. Maniotis, Dynamic arrays in practice (2015). Work in

progress
[20] J. Katajainen and B. B. Mortensen, Experiences with the design and implementation

of space-efficient deques, WAE 2001, LNCS 2141, Springer (2001), 39–50.
[21] J. Katajainen and B. Simonsen, Adaptable component frameworks: Using vector

from the C++ standard library as an example, Proceedings of the 2009 ACM SIG-
PLAN Workshop on Generic Programming, ACM (2009), 13–24.

[22] D. E. Knuth, Sorting and Searching, The Art of Computer Programming 3, 2nd Edi-
tion, Addison Wesley Longman (1998).

[23] D. Kolb, Experiential Learning: Experience as the Source of Learning and Develop-
ment, Prentice Hall (1984).

[24] A. LaMarca and R. E. Ladner, The influence of caches on the performance of heaps,
ACM J. Exp. Algorithmics 1 (1996), Article 4.

[25] M. G. Luby, J. S. Naor, and A. Orda, Tight bounds for dynamic storage allocation,
SIAM J. Discrete Math. 9, 1 (1996), 155–166.

[26] J. Robson, An estimate of the store size necessary for dynamic storage allocation, J.

51

ACM 18, 3 (1971), 416–423.
[27] J. R. Sack and T. Strothotte, An algorithm for merging heaps, Acta Inform. 22, 2

(1985), 171–186.
[28] P. Sanders, Fast priority queues for cached memory, ACM J. Exp. Algorithmics 5

(2000), Artilce 7.
[29] B. Simonsen, A framework for implementing associative containers, CPH STL Report

2009-3, Dept. Comput. Sci., Univ. Copenhagen (2009).
[30] Stack Exchange Inc., Heap implementation using pointer, Worldwide Web Document

(2013). Available at http://codereview.stackexchange.com/questions/33365/
heap-implementation-using-pointer.

[31] Stack Exchange Inc., Pointer-based binary heap implementation, Worldwide
Web Document (2013–2014). Available at http://stackoverflow.com/questions/
19720438/pointer-based-binary-heap-implementation.

[32] A. Stepanov, Foreword, D. R. Musser, G. J. Derge, and A. Saini, STL Tutorial and
Reference Guide: C++ Programming with the Standard Template Library, 2nd Edi-
tion, Addison-Wesley (2001), xxi–xxvii.

[33] B. Stroustrup, The C++ Programming Language, 4th Edition, Pearson Education,
Inc. (2013).

[34] J. Vuillemin, A data structure for manipulating priority queues, Commun. ACM 21,
4 (1978), 309–315.

[35] L. M. Wegner and J. I. Teuhola, The external heapsort, IEEE Trans. Softw. Eng.
15, 7 (1989), 917–925.

[36] J. W. J. Williams, Algorithm 232: Heapsort, Commun. ACM 7, 6 (1964), 347–348.
[37] D. Woodall, The bay restaurant—A linear storage problem, Amer. Math. Monthly

81, 3 (1974), 240–246.

